On low degree k-ordered graphs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On low degree k-ordered graphs

A simple graph G is k-ordered (respectively, k-ordered hamiltonian) if, for any sequence of k distinct vertices v1, . . . , vk of G, there exists a cycle (respectively, a hamiltonian cycle) in G containing these k vertices in the specified order. In 1997 Ng and Schultz introduced these concepts of cycle orderability, and motivated by the fact that k-orderedness of a graph implies (k − 1)-connec...

متن کامل

Degree conditions for k-ordered hamiltonian graphs

For a positive integer k, a graph G is k-ordered hamiltonian if for every ordered sequence of k vertices there is a hamiltonian cycle that encounters the vertices of the sequence in the given order. It is shown that if G is a graph of order n with 3 k n /2, and deg(u)þ deg(v ) nþ (3k 9)/2 for every pair u; v of nonadjacent vertices of G, then G is k-ordered hamiltonian. Minimum degree condition...

متن کامل

On k-ordered graphs

Ng and Schultz [J Graph Theory 1 (1997), 45±57] introduced the idea of cycle orderability. For a positive integer k, a graph G is k-ordered if for every ordered sequence of k vertices, there is a cycle that encounters the vertices of the sequence in the given order. If the cycle is also a Hamiltonian cycle, then G is said to be k-ordered Hamiltonian. We give sum of degree conditions for nonadja...

متن کامل

On k-Ordered Bipartite Graphs

In 1997, Ng and Schultz introduced the idea of cycle orderability. For a positive integer k, a graph G is k-ordered if for every ordered sequence of k vertices, there is a cycle that encounters the vertices of the sequence in the given order. If the cycle is also a hamiltonian cycle, then G is said to be k-ordered hamiltonian. We give minimum degree conditions and sum of degree conditions for n...

متن کامل

On k-ordered Hamiltonian graphs

A Hamiltonian graph G of order n is k-ordered, 2 ≤ k ≤ n, if for every sequence v1, v2, . . . , vk of k distinct vertices of G, there exists a Hamiltonian cycle that encounters v1, v2, . . . , vk in this order. Define f(k, n) as the smallest integer m for which any graph on n vertices with minimum degree at least m is a k-ordered Hamiltonian graph. In this article, answering a question of Ng an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2008

ISSN: 0012-365X

DOI: 10.1016/j.disc.2007.05.024